Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 264, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30651568

RESUMO

Permafrost warming has the potential to amplify global climate change, because when frozen sediments thaw it unlocks soil organic carbon. Yet to date, no globally consistent assessment of permafrost temperature change has been compiled. Here we use a global data set of permafrost temperature time series from the Global Terrestrial Network for Permafrost to evaluate temperature change across permafrost regions for the period since the International Polar Year (2007-2009). During the reference decade between 2007 and 2016, ground temperature near the depth of zero annual amplitude in the continuous permafrost zone increased by 0.39 ± 0.15 °C. Over the same period, discontinuous permafrost warmed by 0.20 ± 0.10 °C. Permafrost in mountains warmed by 0.19 ± 0.05 °C and in Antarctica by 0.37 ± 0.10 °C. Globally, permafrost temperature increased by 0.29 ± 0.12 °C. The observed trend follows the Arctic amplification of air temperature increase in the Northern Hemisphere. In the discontinuous zone, however, ground warming occurred due to increased snow thickness while air temperature remained statistically unchanged.

2.
Environ Toxicol Chem ; 23(11): 2627-32, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15559277

RESUMO

A study was conducted to determine the half-life (t1/2), degradation rate, and metabolites of metolachlor in a water-sediment system and in soil with and without switchgrass. Metolachlor degradation in a laboratory was determined in sediment from Bojac sandy loam soil incubated at 24 degrees C. The study also was conducted in a greenhouse on tilted beds filled with Bojac soil and planted with switchgrass. In both experiments, samples were collected at days 0, 7, 14, 28, 42, 56, and 112 and analyzed for metolachlor and its major metabolites. The water-sediment oxidation-reduction potential took 28 d to reach -371 mV and the pH increased from 5.6 to 6.5 by the last sampling day (day 112). The average soil temperature of the tilted beds with or without switchgrass during the study was 21degrees C and the soil moisture content was 23% by volume. The t1/2 of metolachlor was 34 d in sediment and 8 d in the water phase. The t1/2 of metolachlor in soil from the switchgrass filter strip (6 d) was not different from that in soil without grass (9.6 d). The metolachlor metabolites ethanesulfonic acid (ESA) and oxanilic acid (OA) were detected in the water-sediment system and in soil from tilted beds. In both sediment and soil from tilted beds, the two metabolites peaked by day 56 of incubation and declined after that, indicating transformation to other products. In the water-sediment system, greater quantities of OA and ESA were detected in sediment than in the aqueous phase. The production of OA and ESA in the watersediment system occurred in the first 28 d, when the system was at an aerobic redox state. Metolachlor can degrade in sediment and the relatively high soil temperature and moisture level accelerated its breakdown in beds with and without switchgrass. Under warm and moist soil conditions, the presence of switchgrass has no effect on the degradation of metolachlor.


Assuntos
Acetamidas/química , Sedimentos Geológicos/química , Herbicidas/química , Ácido Oxâmico/análogos & derivados , Acetamidas/análise , Acetamidas/metabolismo , Alcanossulfonatos/análise , Biodegradação Ambiental , Sedimentos Geológicos/análise , Meia-Vida , Herbicidas/metabolismo , Concentração de Íons de Hidrogênio , Ácido Oxâmico/análise , Panicum/metabolismo , Temperatura , Virginia , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...